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This paper is in three parts. In the first part, I compare and contrast three typical methods of 
teaching generalisations in mathematics. In the second, I describe the theory of generalisation 
expounded by the Soviet psychologist Vasily Davidov. In the third part, I re-examine the 
three methods of teaching mathematical generalisations in the light of Davidov's theory, and 
make some general conclusions. 

For some time, Paul White and I have been promoting the importance of the abstraction 
process in mathematics learning (Mitchelmore & White, 1995; White & Mitchelmore, 
1996). This approach is a reaction to decontextualised mathematics teaching. It is based 
on the assumption that abstract mathematical generalisations are reached by searching for 
common elements in a range of several concrete situations. On the other hand, we also 
believe in the problem-solving approach, where a student's struggle with one problem 
may be worth twenty done as exercises following a method given by a teacher. How are 
these various methods of learning and teaching related? 

THREE TEACHING METHODS COMPARED 

The ABC Method 

What I call the ABC method-teaching Abstract Before Concrete-is widely used in 
mathematics teaching. The theory is that "knowledge acquired in 'context-free' 
circumstances is supposed to be available for general application in all contexts" (Lave, 
1988, p. 9). Steinbring (1989) shows that many school mathematics teachers believe that 
procedures should be learnt before applications, and textbooks and even curriculum guides 
often reflect the same order (Mitchelmore & White, 1995). 

The ABC method has been widely criticised for leading (at the best of times) to abstract
apart knowledge-superficial knowledge that cannot be applied to problem situations 
and is quickly forgottenbnce examinations are over (Schoenfeld, 1988; White & 
Mitchelmore, 1996). Speaking of students who have been taught by the ABC method, 
Dreyfus (1991, pp. 28) writes: "They have been taught the products of the activity of 
scores of mathematicians in their final form, but they have not gained insight into the 
processes that have led mathematicians to create these products." 

Empirical Methods 

Diametrically opposed to the ABC method is the "concrete to abstract" approach espoused 
by many educators. In one manifestation of this approach, students are encouraged to 
model the pattern-seeking behaviour which is said to be fundamental to mathematics using 
concrete (manipulative or figural) materials. Two examples: 

• Grade 4 students draw squares of dots: 1 by 1, 2 by 2, 3 by 3, and 4 by 4. They count the 
number of dots and write down the sequence obtained: 1, 4, 9, 16. They notice that 
these numbers go up by successive odd numbers (3, 5, 7) and infer that the next number 
must be 9 more than 16. Bingo! 25-it works. 

• Grade 8 students draw a triangle, of whatever size and shape they like. The students 
then measure the three angles of their triangle. Answers vary around 180 degrees. The 
teacher calls this the "angle sum of a triangle theorem" and states that the angle is 
always 180 degrees (if you could measure it exactly). 

Activities like these do show how new mathematical knowledge is often discovered, but 
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the results are still mysterious. Some obvious questions are simply not asked: "Why do 
square numbers go up by odd numbers?" "Are you sure the angles in a triangle always add 
up to 180 degrees? Exactly?" If these questions are not asked, there is a constant danger of 
making false inductions. More importantly, it is answering the "Why?" questions which 
explains the results, and this is surely the essence of mathematics. 

A Problem Solving Approach 

Another reaction to the ABC method is to have students model another supposedly 
fundamental mathematical behaviour: problem solving. The tactic is to pose a problem 
and then leave students to solve it and convince others the solution is correct. An example 
I often use is: Can you tessellate the plane using a scalene triangle? (Mitchelmore, 1998, 
Activity P08). All sorts of geometry concerning congruence, angles, and parallels arise 
and become connected-in particular, angles on a straight line; the angle sum of a triangle; 
and corresponding, alternate, and co-interior angles formed by a line intersecting several 
parallel lines. In my experience, a period or two wrestling with this problem produces a far 
deeper understanding of these concepts and results than teaching each one separately (even 
using an empirical approach). 

A Comparison: The Three Approaches to One Topic 

The differences between the three approaches are best illustrated by considering how they 
would be used to teach one topic. This example was suggested by Boero and Garuti (1994), 
who describe a classroom investigation of indirect height measurement using shadows 
cast by the sun. All the Grade 8 students seemed to grasp the proportion method of 
calculating the inaccessible height, but most could not transfer the result to similar triangles 
in general. What should the teacher do next? 

One method would be to present the theory of similar triangles, showing how this theory 
applies to height measurement and then applying it to other contexts. This is a variant of 
the ABC method. By presenting the theory after one application, students should at least 
be able to link the abstract concept of "similar triangles" to something concrete. But I 
predict that students would still not appreciate the generality of the concept, and would 
learn to manipulate problems in an abstract-apart fashion. 

A second possible method is to study further contexts where similar triangles occur (e.g., 
scales, enlargements, gradients) and learn how to make the corresponding calculations in 
those contexts. Then, students can be led to notice the similarities between all such cases
between the objects studied, the relations between them, and the method of calculation. 
The common features can then be identified and abstracted: the objects are points, lines, 
and triangles; the crucial relation is similarity; and the method of calculation is proportion. 
This is a variant of the empirical method discussed above; the patterns that are sought in 
this case are much deeper, involving comparisons between relations, but the principle is 
the same. The concepts and relations abstracted would not be abstract-apart but abstract
general (i.e., general to many contexts). 

A third method, a variant of the problem-solving method above, is suggested by Dorfler 
(1991). Take the result obtained from height measurement and ask the question: What 
conditions in the situation are essential to the result obtained? For example, the calculation 
involves two vertical and two horizontal lines; must the lines be vertical and horizontal? A 
short thought experiment (just rotate the page) is enough to see that the answer is clearly 
"no"-but at least the corresponding lines must be parallel. Must these two lines be 
perpendicular? This question requires some empirical investigation before coming to the 
same conclusion as for the first question. Must the third lines of the corresponding triangles 
be parallel? Again, empirical investigation is needed to reach the answer, "yes." Must all 
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three corresponding lines be parallel, then? I can foresee much discussion and argument 
before coming to the conclusion that the essential condition is that the corresponding angles 
of the triangles be equal in size. This method of reaching a general result has much in 
common with the problem-solving approach outlined above. A long time is spent on one 
problem, but in the course of solving it many ideas are brought into relation and the origin 
of the resulting abstract concepts and the value of the resulting relationship is quite clear. 

TYPES OF GENERALISATION 

All three methods we have outlined are aimed at teaching mathematical generalisations
concepts and results which are generally true. The Russian psychologist Davidov has 
recently expounded two different types of generalisation using in teaching, including 
mathematics teaching (Davidov, 1972/1990). Although much of the book is full of Marxist 
jargon like dialectical materialism, there is a great deal of value in what he has to say. And 
since his work is not widely known in the West, I believe it is worth attempting to summarise 
and apply his theory. All page references below are to this book, unless otherwise stated. 

Empirical Generalisation 

Davidov summarises what he calls the traditional or empirical theory of generalisation as 
follows. A generalisation (also called a concept) arises from classification activity followed 
by "finding and singling out [properties] in a whole class of similar objects" (p. 10). The 
wider the range of objects or experiences included, the richer the concept. Generalisation 
is "inseparably linked to the operation of abstracting. Delineating a certain quality as a 
common one includes separating it from other qualities. This allows the child to convert 
the general quality into an independent and particular object of subsequent actions" (p. 
13). The purpose of abstraction is thus to permit the application of general rules of operation 
in specific fields of application. Davidov argues that the processes of generalisation and 
abstraction are applied mainly to real objects, although they may later be applied to concepts 
derived from real objects. And he ascribes the pedagogical principle, "always proceed 
from the particular to the general," to a wide-spread belief in the psychological principle 
of empirical generalisation as the basis for all learning and teaching in school (not only 
mathematics). . 

The theory Davidov summarises here is essentially the same as that described by Dienes 
(1961), Piaget (1972), Skemp (1986), and others. While recognising that empirical 
generalisation has played an important role in the development of science and mathematics 

. in the past, Davidov criticises it on several grounds: 

• Classes are not formed by noticing common features. In fact, it is impossible to state 
the defining features of most everyday concepts (such as human). Also, classes are not 
formed from arbitrary collections of objects-there is always some reason for objects 
being grouped together (often a common function). Classifying on the basis of external 
characteristics does nothing towards identifying their inner connections. 

• Teaching through empirical generalisation must consist of the transmission of concepts 
known to the teacher (who is aware of the inner connections) through examples chosen 
by the teacher which to the students appear to be unrelated. Also, the quality of a concept 
formed is determined by the objects in the class (again, chosen by the teacher) from 
which it has been abstracted. 

• A restriction to empirical generalisation, by emphasising the link to concrete experience, 
discourages children from embarking on something which is qualitatively different: 
abstract mathematical thought. 

Piaget does not escape Davidov's criticism. His theory is attacked firstly as being basically 
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empirical and secondly as not proceeding beyond early adolescent thinking. 

Implications for Teaching 

Davidov cites a number of studies carried out by Soviet psychologists (mostly reported 
only in Russian) to support his criticism of empirical generalisation: 

• Pototskii (1963) found that teachers often teach classification of problems instead of 
problem solving, as a result of which students cannot solve novel problems. Yaroshchuk 
(1957) found that nearly 90% of Grade 4 students solved those and only problems 
which they could identify as of a type they had solved previously. 

• In one of his own studies (pp. 143-150), Davidov found that Grade 1 students who had 
mastered initial number concepts following the standard approach to teaching (judged 
by him to be based on empirical generalisation) were unable to transfer their counting 
skills to counting sets of sets of objects or measurement units. 

• Krutetsky (1968) (also published in English in 1976) investigated 6th and 7th graders' 
ability to learn algebraic and other mathematical generalisations. He found that below
average students never learnt to generalise; average students learnt to generalise after 
many examples; and above-average students learnt to generalise after one or two 
examples. The below-average and the average students were apparently using empirical 
generalisation whereas the above-average students were using something else. Davidov 
interprets these results as demonstrating (a) the ineffectiveness and inefficiency of 
empirical generalisation, and (b) the debilitating effect of a method of teaching based 
on empirical generalisation. 

Theoretical Generalisation 

In a chapter entitled "Basic Propositions in the Dialectical Materialist Theory of Thought," 
much of which is taken up with references to the works of Marx, Engels, and Lenin, 
Davidov expounds the principles of what he calls theoretical or content-based 
generalisation. A few quotations should clarify the new way in which this theory uses the 
same terms as in empirical generalisation, plus some new ones: 

Generalization is achieved, not through simple comparison of the attributes in particular objects 
... but through analysing the essence of the objects and phenomena being studied. (p. 295) 

To make such a generalization means to discover a principle, a necessary connection of the 
individual phenomena within a certain whole, the law for the formation of that whole. (p. 
295) 

By abstracting, man isolates and ... mentally retains the specific nature of the real relationship 
of things (p. 294). 

Content-related abstraction and generalization underlie the formation of a scientific, theoretical 
concept. Such concept functions as a completely definite and concrete method of connecting 
the universal and the individual. (p. 296) 

Only when the origin of the object or a conception is clear to the student does it become 
. possible to assert that ... the student has a concept of that object. (p. 334) 

The essence of a thing is none other than the basis (included in itself) for all of the changes 
that occur with it in interaction with other things. (p. 194) 

We may note some particular aspects of these ideas: 

• The emphasis on analysis, in place of comparison or similarity, as the means for 
identifying the concept to be abstracted. The term content-based emphasises that analysis 
can only operate on content, not on superficial appearances. 

• The emphasis on connections (not only between elements but also between the general 
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and the particular) which exist for some reason, are necessary, the result of some law. It 
is analysis which brings out these necessary connections. 

Terms like essence and concrete (also, elsewhere, internal, real, and true) correlate with 
the claim that content-based generalisation is deeply meaningful thought which "goes 
beyond the limits of sensory conceptions" (p. 300). 

Implications for Teaching 

Davidov cites several Soviet studies in support of the superiority of theoretical 
generalisation, including Krutetsky (1968/1976) noted above. Here are two more: 

• Slavskaya (1958) showed that the detailed analysis of a basic geometrical problem led 
to immediate transfer to an auxiliary problem, students "singling out the essential link 
that connected it with the basic problem." Solving the auxiliary problem first, without 
any relation to the basic theorem, led only to a gradual generalisation "in the course of 
a detailed comparison of the features of both problems" (p. 201). 

• Mashbit (1963) compared students who "ascertained initially the general structure of 
the solution method by analyzing particular problems which were models" with those 
who "solved particular problems in which the concrete conditions and the form for 
expressing a mathematical relationship varied." The second group made slow progress, 
whereas the first "travelled the path that is accessible only to the best prepared students" 
who used the second method (p. 329). 

In proposing reforms to school mathematics teaching, Davidov (p. 320) argues that "there 
must be instruction ... that reproduces in compressed, abbreviated form the real historical 
process of the birth and development ... of knowledge. The child ... cannot independently 
'acquire' what people have already attained, but he should repeat the discoveries of human 
beings in previous generations". He states the following general sequence for the 
introduction of new concepts using theoretical generalisation: 

1) students' orientation in a problem situation ... whose solution requires a new concept, 2) 
mastery of a model for the sort of transformation of the material that discloses in it a relationship 
that serves as a general basis for solving any problem of the given type, 
3) establishment ofthis relationship in an object-related or symbolic model, which permits its 
properties to be studied in "pure form," 4) disclosure of properties of the delineated relationship 
by which to deduce the conditions and methods of solving the original problem (p. 349). 

He then reports briefly on an experimental primary school mathematics course which focuses 
on solving measurement and counting problems (in that order) and does not shy away 
from fractions and integers as they arise in such problems. Most remarkably, "For four 
years, the students solve all word problems only by setting up equations-that is, with np 
access to an arithmetical method. [Studies indicate that] this method, in the first place, is 
entirely accessible to children of 7 -10 years ... ; second, it substantially simplifies all of the 
instructional work on problems; third, it largely favors the children's development of skill 
in independently solving 'new' problems, one encounteredfor the first time" (p. 365). 

APPLYING DAVIDOV'S THEORY 

The Three Teaching Methods Classified 

The three methods of teaching mathematical generalisations which we outlined in the first 
part of this paper can now be classified using Davidov's theory: 

The "empirical method" is clearly based on the tenets of empirical generalisation. Results 
are recognised as properties which are common to several situations chosen by the teacher, 
but are not integrated into a general explanatory theory. Understanding may be superficial 
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and the whole exercise pointless. 

The "ABC method," although it is in a sense the opposite of the empirical method, is in 
fact also based on the theory of empirical generalisation. For the ABC method can be 
regarded as an attempt to short-circuit a lengthy process of empirical generalisation by 
presenting students with the abstract end product. Use of this end product in problem 
solving depends on recognising the problem as being of a type to which the abstract result 
may be applied-exactly as in the empirical method (but without the benefit of experience 
with several examples). Again, understanding is likely to be superficial and the purpose of 
the concepts studied obscure. 

By contrast, the "problem-solving method" is clearly based on the principle of theoretical 
generalisation. Situations (tessellations, shadows) are analysed to identify the structure of 
the problem, the basic elements and the essential connections between them. The concepts 
which are formed in this way are not isolated, but take their meaning from their relations 
to one another. 

Limitations of the Empirical Approach: One Last Example 

The more I think about mathematics teaching, the more I see the limitations of empirical 
generalisation. Here is an example from my own textbook (Mitchelmore & Raynor, 1986), 
suggested by a similar case described by Peschek (1989): 

In this textbook, linear relations are introduced using a double process of empirical 
generalisation as follows. The student is first set several arithmetical problems in familiar 
"linear" situations (taxi fares, electricity costs, etc.). From similarities between the various 
calculations within each problem, a general calculation procedure is formulated for each 
situation. Similarities between the calculation procedures in different situations are then 
identified: one quantity is always found by mUltiplying another quantity by a fixed number 
and adding another fixed number. The concept of linear growth is defined as such a relation. 
It is then found that the graph of linear growth is a straight line, and the algebraic form 
y = kx + a is introduced. 

As Peschek (1989) points out, the problem with this approach is that the essential 
characteristic oflinear functions (that a given increment in the independent variable always 
leads to the same increment in the dependent variable) gets lost. It is always there implicitly, 
of course, but it is never made explicit. Students are never asked why each given situation 
leads to a linear function, or what types of situation are "linear." As a result, students do 
not learn a deep conception of linear function; instead, their concept is limited to the 
superficial form of the relation, essentially a procedural conception. And how is a student 
expected to judge whether a new situation is linear? 

A Critique of Davidov's Theory 

Although Davidov's theory seems to have much to recommend it, I can see some problems: 

• Defining theoretical generalisation as the search for essential relations is unsatisfactory. 
How does one know what is essential? Also, what is essential in one context might not 
be essential in another. 

• I cannot see how theoretical generalisation can take place without some empirical 
generalisation as its basis. For example, in generalising the shadows problem above, 
how does one find out that the condition that two lines be perpendicular can be relaxed 
to a requirement that corresponding sides be parallel, or that this condition can be relaxed 
to a requirement that corresponding angles be equal? Surely only by empirical 
investigation, not by theoretical reasoning. 
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• Moreover, an empirical investigation of relations can lead to an integrating structure 
just as a process of theoretical generalisation can. For example, the development of a 
language to express the communality between shadow, enlargement, and gradient 
situations can lead to an abstract fonnulation of the similar triangle properties which is 
at least as general as that obtained by an investigation of the essential elements in one 
of these situations. 

CONCLUSION 

Davidov's theory has much in common with several recent theories treating understanding 
in mathematics as "making connection between ideas, facts, or procedures" (Hiebert & 
Carpenter, 1992, p. 67) leading to the construction of what Ross & Hoyles (1996, p. 108) 
call webbing. I believe the theory would generously repay closer study by school and 
university teachers, and by teachers of teachers. 
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